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Key Concepts

Add particles to HiF1. First step: particle tracing only, preliminary to closure.

Full-orbit equations for now, guiding center equations later.

Electromagnetic potentials (A, ¢) and Cartesian coordinates x expressed as high-
order spectral elements in logical coordinates q.
Hamilton’s equations of motion in logical coordinates:

»  Exploit full high-order representation.

* Avoid mapping between logical and physical coordinates.

* Quasi-continuous representation of metric tensor. No stopping at grid cell boundaries.
High-order implicit and symplectic integrators, assuming implicit PIC formulation,

c.f. Chen, Chacon, and Barnes, no particle CFL condition, separate time steps for
electrons, 1ons, fluid.

Compare speed, accuracy, conservation properties for different methods.
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Lagrangian Formulation

Cartesian and Logical Coordinates
. . Ox;
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Metric Tensor and Logical Components of A
9ik = Jij ks 9ii95 =0k, A = A
Conjugate Momenta
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Lagrange’s Equations of Motion
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Hamiltonian Formulation

Legendre Transformation
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Example: Cylindrical Coordinates
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Field Specification

TYPE :: field type
REAL(r8) :: phi
REAL(r8), DIMENSION(3) :: gradphi,a
REAL(r8), DIMENSION(3,3) :: grada,ginv
REAL(r8), DIMENSION(3,3,3) :: gmatl

END TYPE field type

SUBROUTINE field eval(t,q,field)
REAL(r8), INTENT(IN) :: t

REAL(r8), DIMENSION(3), INTENT(IN) :: g
TYPE (field type), INTENT(OUT) :: field

Interface could be used for any method of
discretization, e.g. NIMROD, M3D-Cl1
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ODE Solvers

Reference

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integeration: Structure-
Preserving Algorithms for Ordinary Differential Equations, 2™ Ed., Springer, 2006.

Ordinary Differential Equation

y — f(ty) Y(tO) = Yo

Runge-Kutta Methods

kif(to—i—cih.yo—i—hZaijkj), izl,...,s

7=1

ci=) aij, y1=Yo+h) bk
j=1

=1
» Specific method specified by s, a, b, c.
» Key property: order of accuracy.
» Special properties: explicit, implicit, diagonally implicit, symplectic.

» Implicit methods require Picard iteration.
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Examples of Runge-Kutta Methods

Fourth-Order Explicit Methods, s =4
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s (12 0 00y foe) (12
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0 0 00 1/8 0
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2nd-Order Implicit Trapezoidal Method, s =2

a:(192 192>’ b:(ig)’ C:(?)

Symplectic: preserves discretized phase space volume,

A\

» Energy error is oscillatory, not secularly growing. Amplitude of
oscillation depends on order and step size.

» Implicit: requires Picard iteration
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Gauss Collocation Methods

4th-Order Gauss Collocation Method, s =2

o= (il ) o= (12) o= (1)

6th-Order Gauss Collocation Method, s =3

5/36 + \/15/24 2/9 5/36 — V/15/24 4/9
5/36 +/15/30 2/9+ /15/15 5/36 5/18 1/2 +/15/10

5/36 2/9 —/15/15 5/36 — /15/30 1/18 1/2 —/15/10
a—= , b= , C= 1/2
» Symplectic: preserves discretized phase space volume,
» Energy error is oscillatory, not secularly growing.
» Implicit: requires Picard iteration

» Order of accuracy is twice the number of function evaluations.
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The PUSH Code

Fields
* Analytical FRC with vacuum RMF
*  Analytical cylindrical spheromak

* HiFi fields, arbitrary nx, ny, nz, np
Horner’s method for fast polynomial evaluation

ODE solvers
*  Explicit: LSODE, RK4
« 2 order implicit, symplectic: Crank-Nicholson, Midpoint

«  Higher-order implicit: 4t and 6 order Gauss Collocation

Initial conditions, n particles
*  Maxwellian velocity distribution

* Random initial positions

Diagnostics
« XDRAW
 Vislt
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XDRAW Graphics, Spheromak

Radial Position vs. Scaled Time Axial Position vs. Scaled Time
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Speed and Accuracy

Function Calls per Time Step Relative Error vs. Scaled Time
% ] Gauss Collocation 6
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O )
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» Explicit methods are cheap, but error grows secularly.

» Implicit, symplectic methods are expensive, but error
oscillates, bounded by step size and order

» How much effort is justified by improved error control?
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Catch-22

Implicit, symplectic methods have higher order but require more
function evaluations per time step.

Can we win by exploiting higher order to take larger time steps?
Catch-22: failure of Picard iteration.

This 1s for full orbits. It may be possible to beat this for guiding
center orbits. That remains to be seen.
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HiFi Fields

Horner’s method 1s used to optimize polynomial evaluation after
input spectral element amplitudes are converted to polynomial
coefficients.

High-order elements require more cpu time for polynomial
evaluation.

Low-order elements cause deterioration of energy conservation
because of discontinuities in metric tensor.

High degree polynomial input can be truncated.
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Effect of np on Error, GC4

np=4

np=>5
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Summary and Future Directions

The PUSH code 1s designed to allow exploration of different methods for
optimizing particle pushing in analytical and numerical fields.

Hamiltonian formulation in logical coordinates allows full use of high-order
representation and avoids the need to transform between logical and physical
coordinates.

Flexible field specification allows easy interface for any kind of spatial
discretization.

Advanced ODE solvers have been implemented and tested:
implicit, high-order, symplectic.

The results show that advanced methods can improve error control at a price.
It 1s not yet clear when that price is worth paying.

Implementation of Hamiltonian guiding-center equations is straightforward.

Future directions: efficient parallelization, closure.
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